

2010 Marking Scheme

Grade Awarded	Mark Required (/ ₁₀₀)	% candidates achieving grade
A	70+	28.2%
В	57+	24.3%
С	44+	23.6%
D	37+	10.6%
No award	<37	13.3%

Section:	Multiple Choice		Extended Answer	
Average Mark:	25.5	/40	32.1	/60

	2010) Hi	gher Chemistry Marking Scheme		
MC Qu	Answer	% Pupils Correct	Reasoning		
1	В	80	 ☑A HBr would dissolve to form hydrobromic acid solution with pH<7 ☑B NH₃ would dissolve to form ammonium hydroxide solution with pH>7 ☑C CO₂ would dissolve to form carbonic acid solution with pH<7 ☑D CH₄ is a non-polar hydrocarbon and does not dissolve. 		
2	С	74	 A No precipitate as magnesium chloride or sodium nitrate are both soluble B No precipitate as magnesium sulphate or sodium nitrate are both soluble C Precipitate formed: Silver chloride is insoluble and forms a precipitate D No precipitate as silver sulphate or sodium nitrate are both soluble 		
3	С	35	1mol of CuCl2 formula units \leftrightarrow 1mol Cu2* ions1mol of CuSO4 formula units \leftrightarrow 1mol Cu2* ions \therefore 0.5mol CuCl2 f.u. \leftrightarrow 0.5mol Cu2* ions \therefore 0.5mol CuSO4 formula units \leftrightarrow 1mol Cu2* ionsTotal number of Cu2* ions = 0.5mol + 0.5mol = 1molconcentration = $\frac{no. of mol}{volume}$ $= \frac{1 mol}{0.5 litres}$		
4	В	67	\blacksquare A Temperature is a measure of the kinetic energy of all particles not just the ones which react \blacksquare B Temperature is a measure of the kinetic energy of all particles not just the ones which react \blacksquare C The activation energy is the minimum energy required for a successful collision \blacksquare D The activation energy is the minimum energy required for a successful collision		
5	В	43	0.8mol of H₂ remaining ∴ 0.2mol of H₂ has reacted H₂ + I₂ → 2HI 1mol 2mol 0.2mol 0.4mol		
6	D	26	 A Increasing the concentration would increase the final volume of gas produced B H₂SO₄ has 2×H⁺ ions per formula unit so final volume of gas produced would increase C Ethanoic acid is a weak acid so initial gradient would be less steep D Magnesium is more reactive than zinc so initial gradient of line is steeper 		
7	С	59	 A True: a catalyst provides an alternative route to the products B True: a catalyst lowers the energy needed for successful collisions (activation energy) C False: a catalyst does not provide any energy to a reaction D False: reactant molecules adsorb to the catalyst but do not form strong bonds 		
8	В	62	The activation energy (E_a) is the minimum energy required for a successful collision and the formation of products. The value of the activation energy is always endothermic (positive) as it represents the bond breaking processes. The enthalpy change (Δ H) cannot be higher than the activation energy because it		
9	A	82	represents both endothermic bond breaking steps and exothermic bond forming steps. A the boiling point increases down group 7 (data booklet p4) B the density increases down group 7 (data booklet p3) C the 1 st ionisation decreases down group 7 (data booklet p10) D the atomic size increases down group 7 (data booklet p5)		
10	D	39	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
11	В	79	 A atoms of similar size can have different electronegativities affecting polarity B atoms with same electronegativity form non-polar covalent bonds C 1st ionisation energy has no effect on polarity of a bond D atoms with different number of outer electrons can form non-polar covalent bonds 		
12	A	72	 ☑A CH₃COOH has an O-H bond ∴ ethanoic acid contains hydrogen bonding ☑B Ethyl ethanoate (C₂H₅COOCH₃) does not have a N,O or F atom bonded to a hydrogen ☑C Hexane C₆H₁₄ does not have a N,O or F atom bonded to a hydrogen atom ☑D Hex-1-ene C₆H₁₂ does not have a N,O or F atom bonded to a hydrogen atom 		

13	В	54	The C-F bond is POLAR due to electronegativity difference of 1.5 $\begin{array}{c} \delta_{+} & \delta_{-} \\ C & - F \end{array} \qquad \begin{bmatrix} \delta_{-} & \delta_{-} \\ \delta_{-} & C & - F \\ \delta_{-} & F & \delta_{-} \\ \delta_{-} & \delta_{-} \\ \delta_{-$
14	D	67	 A magnesium oxide is ionic and is a solid at room temperature B silicon dioxide is covalent network and is a solid at room temperature C nitrogen is a gas at room temperature D sulphur is a solid at room temp, doesn't conduct as a solid and forms SO_{2(g)}
15	D	62	■ A gfm O ₂ molecules = 32g : no. of mol = $^{mass}/_{gfm} = ^{16}/_{32} = 0.5$ mol O ₂ molecules ■ B no. of mol = v x c = 1 x 1 = 1mol : 1mol Na ⁺ Cl ⁻ formula units : 2 mol of ions ■ C gfm C atoms = 12g : no. of mol = $^{mass}/_{gfm} = ^{24}/_{12} = 2$ mol C atoms ■ D gfm H ₂ molecules = 2g : no. of mol = $^{mass}/_{gfm} = ^{2}/_{2} = 1$ mol H ₂ molecules
16	С	34	X A ¹ H does not have any neutrons X B 1mol ¹² C = 12g \therefore 1g = ¹ / ₁₂ mol but 6 neutrons per ¹² C \therefore ⁶ / ₁₂ mol neutrons = 0.5mol X C 1mol ²⁴ Mg = 24g \therefore 2g = ² / ₂₄ mol but 12 neutrons per ²⁴ Mg \therefore ²⁴ / ₂₄ mol neutrons = 1mol X D 1mol ²² Ne = 22g \therefore 2g = ² / ₂₂ mol but 12 neutrons per ²² Ne \therefore ²⁴ / ₂₂ mol neutrons = 1.09mol
17	D	48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
18	A	84	Biological material breaks down by anaerobic respiration in a landfill rubbish dump when there is no oxygen available for aerobic respiration by bacteria. Biogas contains mainly methane gas as this small carbon molecule is produced instead of carbon dioxide.
19	A	89	 ✓A 2 carbons on the alcohol side (ethanol) and 4 carbons on the C=O side (butanoic acid) ☑B The C=O side of the ester contains 4 carbons ∴ ester made from butanoic acid ☑C The C=O side of the ester contains 4 carbons ∴ ester made from butanoic acid ☑D The C=O side of the ester contains 4 carbons ∴ ester made from butanoic acid
20	В	87	 ☑A Primary: 1 carbon directly attached to the carbon with the -OH group ☑B Tertiary: 3 carbons directly attached to the carbon with the -OH group ☑C Secondary: 2 carbons directly attached to the carbon with the -OH group ☑D Secondary: 2 carbons directly attached to the carbon with the -OH group
21	С	84	EA chlorines add onto adjacent carbons not onto the same carbon EB chlorines add onto adjacent carbons not onto the same carbon
22	С	67	Reaction XPropanal (aldehyde)Propan-1-ol (primary alcohol)ReductionReaction YPropan-1-ol (alcohol)Propene (alkene)Dehydration
23	A	69	 ✓A ozone absorbs ultraviolet (u.v.) radiation ☑B ozone is broken down by CFCs ☑C ozone absorbs ultraviolet (u.v.) radiation ☑D ozone is broken down by CFCs
24	С	75	Synthesis Gas is a mixture of carbon monoxide and hydrogen.Steam Reforming of methane:Steam Reforming of coal: $CH_{4(g)} + H_2O_{(g)} \rightarrow CO_{(g)} + 3H_{2(g)}$ $C_{(g)} + H_2O_{(g)} \rightarrow CO_{(g)} + H_{2(g)}$
25	A	61	 ☑ A Cracking: large molecules break into smaller, more useful molecules with C=C bonds ☑ B Addition: molecules add across a C=C double bond ☑ C Oxidation: increase in the oxygen : hydrogen ratio e.g. primary alcohol → aldehyde ☑ D Hydrogenation: addition of hydrogen across a C=C double bond

26	D	81	Type of PolyesterFibreCured ResinStructurelinearcross-linked			
	<u> </u>	U -				
27	D	69	 A monomer has two carboxyl functional groups which keep on joining up to extend the polymer B monomer has two hydroxyl functional groups which keep on joining up to extend the polymer C monomer has two different functional groups which keep on joining up to extend the polymer D monomer has one hydroxyl functional groups which prevents the polymer from extending 			
			A saturated fatty acid will have the general formula CnH2n+1COOH			
28	C	00	Formula C19H39COOH C21H43COOH C17H31COOH C13H27COOH			
20	C	80	$\label{eq:calculation} \begin{array}{ c c c c c c c c c c c c c c c c c c c$			
			Saturation Saturated Saturated Unsaturated saturated			
29	D	76	Butter contains fats and oils: $ \begin{array}{ccccccccccccccccccccccccccccccccccc$			
30	D	57	 A Hydration: addition reaction with water added across a C=C double bond B Hydrolysis: Large molecule splits into smaller molecules with water added at break C Hydrogenation: addition reaction with hydrogen added across a C=C double bond O Condensation: small molecules join together with water removed at the join 			
31	В	52	図A Ammonia is made by the Haber Process and is not a raw material 図B Calcium carbonate is chalk/marble and is a raw material 図C Hexane is not a raw material but can be collected by distillation of crude oil 図D Nitric Acid is made by the Ostwald Process and is not a raw material			
32	A	71	$ \begin{array}{cccc} \bullet & Mg + 2H^{*} \rightarrow Mg^{2*} + H_{2} & \Delta H = a \\ \bullet & Zn + 2H^{*} \rightarrow Zn^{2*} + H_{2} & \Delta H = b \\ \bullet & Mg + 2H^{*} \rightarrow Mg^{2*} + H_{2} & \Delta H = a \\ \bullet & X-1 & Zn^{2*} + H_{2} \rightarrow Zn + 2H^{*} & \Delta H = -b \\ \hline & Add \bullet + \bullet' & Mg + Zn^{2*} \rightarrow Mg^{2*} + Zn & \overline{\Delta H = a - b = c} \end{array} $			
33	В	58	 ▲ Equation: 2vol→2vol ∴ change in pressure has no effect on equilibrium ▲ Equation: 2vol→4vol ∴ increase in pressure shifts equilibrium to left to decrease pressure ▲ C Equation: 3vol→3vol ∴ change in pressure has no effect on equilibrium ▲ D Equation: 4vol→2vol ∴ increase in pressure shifts equilibrium to right to decrease pressure 			
34	С	44	\blacksquare A OH^- removed by neutralisation \therefore equilibrium moves to left and lowers intensity of blue \blacksquare B OH^- removed by neutralisation with acid \therefore equilibrium moves to left to replace OH^- ions $\boxdot C$ OH^- removed by neutralisation \therefore equilibrium moves to left and produces more Cu^{2+} ions \blacksquare D OH^- removed by neutralisation with acid \therefore equilibrium moves to left to replace OH^- ions			
35	В	82	AcidConcentrationType of Acid1mol l ⁻¹ hydrochloric acidconcentratedstrong0.1mol l ⁻¹ hydrochloric aciddilutestrong1mol l ⁻¹ ethanoic acidconcentratedweak0.1mol l ⁻¹ ethanoic aciddiluteweak			

36	С	67	☑A a solution with a pH below zero is acidic ∴ solution will not neutralise H ⁺ ions ☑B all solutions (acidic, neutral or alkaline) contain some OH ⁻ ions ☑C a solution with pH below zero is very acidic & has a high concentration of H ⁺ ions ☑D all solutions (acidic, neutral or alkaline) contain some H ⁺ ions and OH ⁻ ions		
37	В	52	 A Ethanoic acid is acidic pH increases to 7 when it is diluted B Sodium chloride solution is neutral pH=7 adding water does not change its pH C Sodium hydroxide is alkaline pH increases to 7 when it is diluted N itric acid is acidic pH increases to 7 when it is diluted 		
38	D	56	 ☑A Nitric acid HNO₃ contains one H⁺ ion per formula unit ☑B Hydrochloric acid HCl contains one H⁺ ion per formula unit ☑C Ethanoic acid is a weak acid and contains few H⁺ ions. ☑D Sulphuric acid H₂SO₄ contains two H⁺ ions per formula unit 		
39	D	28	 ▲ Hydrogen reduces Cu²⁺O²⁻ to Cu metal ∴ H₂ acting as reducing agent ▲ Addition Reaction and not a redox equation ∴ cannot be acting as an oxidising agent ▲ C H₂ → 2H⁺ + 2e⁻: hydrogen loses electrons ∴ H₂ is oxidised and acts as reducing agent ▲ D H₂ + 2e⁻ → 2H⁻: hydrogen gains electrons ∴ H₂ is reduced and acts as oxidising agent 		
40	A	85	$\begin{array}{cccc} & \stackrel{211}{}_{83}\text{Bi} \rightarrow \stackrel{207}{}_{81}\text{TI} & + & \stackrel{4}{}_{2}\text{He} \\ & \stackrel{207}{}_{81}\text{TI} \rightarrow \stackrel{207}{}_{82}\text{Pb} & + & \stackrel{0}{}_{-1}\text{e} \end{array}$		

2010 Higher Chemistry Marking Scheme						cheme			
Long Qu	Ans	wer		Reasoning					
	metallic		contains n	is a metal an netallic bond s a lattice of	ing meta		a non- forms a etwork	with form	is a diatomic element ula N2. As N2 is a non- lecule, there are only
	covalent	network molecular (or discrete)	positiv deloca	positive ions with delocalised outer electrons			300°C)	Van der V	Vaals forces between N2 molecules.
2a (i)	5	8	6 d	elocalised e	lectrons H~ H	H			Н /N_Н О—Н
2a(ii)	Answer	showing:) ا HO-c			0 H " C—N→		н >N—н Он
2b	Soluble in water		Polymer Property	Kevlar Very strong	Poly(eth Soluble in	-		(ethyne) al conductor	Biopol Biodegradable polymer
3a (i)	Concentrations of reactants and products are constant Rate of Rate of forward = reverse reaction reaction		In a syste	ntration of m at equilib	rium:				itant (not equal!) verse reaction
3a(ii)	Niccolved On naturne		Reverse re	n temperati eaction is er O _{2(aq)} becon	ndotherm	nic.			ction.
3b	0.0003125		1mol O ₂ 1mol O ₂ x = 0.00032		32g 0.010g		6.02	×10 ²³ mole	cules
4a		ctrode may form CO₂	At the ter	At the temperature of molten aluminium oxide (above 2072°C) the carbon electrodes may react with any oxygen around.				2072°C) the carbon	
4b		96g		t 000 x (20x6 000 000 C	50)	-	+ 3e ⁻ 3mol 3×9650 50 000 0	00 <i>C</i> 000 <i>C</i>	A Imol 27g 27g× ^{60 000 000} / _(3×96500) = 5596g
5a (i)		reactant(s) of reactant(s)	PPA 1.2 Qu	lestion					

5a (ii)	Colour change is too gradual at room temp	PPA 1.2 Question		
5b	et emperature	The rate of a reaction increases with increasing temperature		
6a	Equation showing:	${}^{11}_{6}\mathcal{C} \rightarrow {}^{11}_{5}B + {}^{0}_{+1}e$		
6b	20	Rate64032016080No of $t_{\frac{1}{2}}$ 0123 $3x t_{\frac{1}{2}}$ = 60 min $\therefore t_{\frac{1}{2}}$ = $\frac{60}{3}$ = 20min		
6c	Pure ¹¹ C contains more ¹¹ C nuclei than same mass of glucose containing ¹¹ C atoms	The half life of ¹¹ C is the same regardless of temperature and chemical form (element, compound or ion). The half-life of the ¹¹ C nucleus is constant. The intensity of the radiation depends on the number of ¹¹ C nuclei present. Pure ¹¹ C contains more nuclei than the same mass of a compound containing ¹¹ C nuclei.		
7α	Answer to include:	C=N bond has electronegativity difference of 0.5 Electrons between C and N are unequally shared between atoms Permanent dipoles (δ + and δ -) are set up Molecules closer together due to electrostatic attraction between δ + and δ -		
7b	Н ОН Н-С-С-С Н СН₃ ОН	$\begin{array}{cccc} H & O & H & H & OH & H & OH \\ H - C - C - C - H & \longrightarrow H - C - C = N & \stackrel{H^{+}(eq)}{\longrightarrow} H - C - C - C \stackrel{/}{\longrightarrow} O \\ H & H & H & CH_{3} & H & CH_{3} & OH \\ & & & & & & & & H & CH_{3} \end{array}$		
8a (i)	Chemical used to make another chemical	A feedstock is a chemical used to make another chemical. A raw material is a substance found naturally on Earth needed by the chemical industry for a particular chemical reaction.		
8a (ii)	Addition	An addition reaction has taken place as Cl-OH has been added across the C=C double bond		
8a (iii)	Sodium chloride	Sodium Na ⁺ from NaOH transfers into the salt Chlorine from molecule transfer into the salt as chloride Cl ⁻ ion		
8a (iv)	renewable resource	Fats and Oils are a renewable resource as they are made using CO_2 recently converted into biomolecules like fats and oils. Propene is made from fossil fuels therefore the glycerol would effectively be made from CO_2 from millions of years ago. When this glycerol is returned to CO_2 , the CO_2 contributes to the greenhouse effect as it is additional CO_2 .		
8b	$2C_{3}H_{8}O_{3}$ \downarrow $3CO_{2} + 3CH_{4} + 2H_{2}$	$2C_3H_8O_3 \longrightarrow 3CO_2 + 3CH_4 + 2H_2$		

		$ C + O_2 \rightarrow CO_2 \qquad \Delta H = -394 \text{ kJ} $					
		$\Theta \qquad \qquad H_2 + \frac{1}{2}O_2 \longrightarrow H_2O \qquad \qquad \Delta H = -286 \text{ kJ}$					
8c	-672	$0 \times 3 \qquad 3C + 3O_2 \rightarrow 3CO_2 \qquad \Delta H = -1182 kJ$					
		add $3C + 4H_2 + \frac{1}{2}O_2 \longrightarrow C_3H_8O_3$ $\Delta H = -672 \text{ kJ mol}^{-1}$					
0.0	Carbon, hydrogen,	Element Carbon Hydrogen Oxygen Nitrogen Carbohydrate 🗸 🗸 🧹					
9a	oxygen and nitrogen	Fats ✓ ✓ Proteins ✓ ✓					
	Count number of	Proteins V V V					
9b	••••••	PPA 2.3 Technique Question					
50	3 minute period						
	Enzymes denature and	Enzymes are biological catalysts which work best at an optimum					
9c	, stop working at high	temperature and pH. At temperatures exceeding body temperature,					
	temperatures	enzymes quickly change shape, denature and stop working.					
10a	Diagrams showing:						
100							
		acid					
		$2SO_2 + O_2 \longrightarrow 2SO_3$					
		2mol 2mol					
		1mol 1mol 64.1g 80.1g					
10b	67.5%	64.1tonnes 80.1tonnes					
		51.2 tonnes 80.1 tonnes x $\frac{51.2}{_{64.1}}$					
		= 63.98tonnes (theoretical)					
		%yield = <u>actual</u> x 100 = <u>43.2</u> x100 = 67.5%					
	Outer electrons further						
	away from nucleus	The outer electron shell of elements gets further away as you go down a group because an additional electron shell is added each time.					
11a(i)	Shielding effect of						
	inner electron shells on	The complete inner electron shells have a screening effect so that the nucleus has less of a hold on the outer electrons.					
	outer electrons						
11a (ii)	2371.88	3.94×10 ⁻²¹ kJ × 6.02×10 ²³ mol ⁻¹ = 2371.88 kJ mol ⁻¹					
11b	$Cl_{(g)} + e^{-} \rightarrow Cl^{-}_{(g)}$	$CI_{(g)}$ + $e^- \rightarrow CI^{(g)}$					
		no. of mol LiOH = volume x concentration = 0.4litres x 0.10 mol l ⁻¹ = 0.04mol					
		n o. of mol $CO_2 = \frac{\text{Volume}}{\text{Molar Volume}} = \frac{0.24 \text{ litres}}{24 \text{ litres mol}^{-1}} = 0.01 \text{ mol}$					
		$2\text{LiOH} + \text{CO}_2 \longrightarrow \text{Li}_2\text{CO}_3 + \text{H}_2\text{O}_3$					
12a	0.02						
		2mol 1mol 0.02mol 0.01mol					
		0.02 mol of LiOH used up (but 0.04mol of LiOH available)					
		0.04mol - 0.02mol = 0.02mol of LiOH still available					

12b	13	$[OH^{-}] = 0.1 = 10^{-1}$ $\therefore [H^{+}] = \frac{10^{-14}}{[OH^{-}]} = \frac{10^{-14}}{10^{-1}} = 10^{-13} \therefore \text{ pH=13}$		
12c	Answer to include:	Carbonate ions pair up with H ⁺ ions in the water to form molecules of carbonic acid $2H^+ + CO_3^{2-} \implies H_2CO_3$ H ⁺ ions removed so water equilibrium shifts to right to replace H ⁺ ions $H_2O \implies H^+ + OH^-$ Additional OH ⁻ ions produced: [OH ⁻] > [H ⁺] pH>7		
13a(i)	Н СН₃СН₃Н Н—С—С—С—С—Н Н сн₃н Н	2,2,3-trimethylbutane position of sidegroups 3x - CH ₃ 4 carbons in all C-C main chain single bonds		
13a(ii)	prevent auto-ignition	Branched and ring hydrocarbons are used in unleaded petrol because the shape of the molecules prevents them getting too close together. If the molecules get too close together then they will auto-ignite before the spark and cause pinking/knocking in the engine.		
13b(i)	of non-renewable fossil	Fossil fuels are non-renewable fuels which contribute to the greenhouse effect. By mixing with renewable oxygenates, the actual amount of fossil fuels burned will reduce.		
13b(ii)	1 diagram from:	$\begin{array}{c} CH_{3}-O-CH_{2}CH_{2}CH_{2}CH_{3}\\ \\ CH_{3}-O-CH_{2}CH_{3}\\ \\ CH_{3}-O-CH_{2}CH_{3}\\ \\ CH_{3}-O-CH_{2}CH_{3}\\ \\ CH_{3}-O-CH_{2}CH_{3}\\ \\ CH_{3}-O-CH_{2}CH_{3}\\ \\ CH_{3}CH_{2}-O-CH_{2}CH_{2}CH_{3}\\ \\ CH_{3}CH_{2}-O-CH_{2}CH_{3}\\ \\ CH_{3}CH_{2}-O-CH_{2}CH_{3}\\ \\ CH_{3}CH_{2}-O-CH_{2}CH_{3}\\ \\ \end{array}$		
13c	Cyclohexane	The hydrocarbon produced must have the formula C ₆ H ₁₂ ∴ alkene or cycloalkane The hydrocarbon does not decolourise bromine solution ∴ a cycloalkane Possible cycloalkanes formed with formula C ₆ H ₁₂ include: cyclohexane 1,1-dimethylcyclobutane 1.2-dimethylcyclobutane 1.3-dimethylcyclobutane methylcyclopentane ethylcyclobutane		
14a(i)	Answers showing:	 Measure the temperature of water Measure the maximum temperature of the solution during dissolving 		
14a(ii)	Good insulator of heat to reduce heat loss	A polystyrene cup is used to reduce the amount of heat loss from the experiment. Polystyrene is a plastic with a high specific heat capacity.		

14a(iii)	50.4kJ mol ⁻¹	1 mol KOH = (1×39) + (1×16) + (1×1) = 39+16+1 = 56g 1.2g ↔ 1.08kJ 56g ↔ 1.08 × $\frac{56}{1.2}$ = 50.4kJ
14b	Answer to include:	The HCl reaction with KOH produces 1 mole of water from 1 mole of KOH The H₂SO4 reaction with KOH produces 2 moles of water from 2 moles of KOH ∴ The same mass of KOH produces the mass of H₂O
15a	Х У О-Н С-Н	X O-H Peak at 3500 - 2500 cm ⁻¹ C-H stretch Y C-H Peak at 2962 - 2853 cm ⁻¹ O-H stretch in -COOH
15b(i)	Condensation or Esterification	H H H H O H H H O H H H H H H H H H H H
15b(ii)	Adsorptions peaks at 2962 - 2853 cm ⁻¹ and 1750 - 1735 cm ⁻¹	esterPeak at 1750 - 1735 cm-1C=O stretch in ester groupC-HPeak at 2962 - 2853 cm-1O-H stretch in -COOH